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Theory of External Two-State Markov Noise 
in the Presence of Internal Fluctuations 
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A theory is presented to take into account internal fluctuations in the study of 
stochastically driven systems. Internal fluctuations are modeled by a master 
equation in which external noise is introduced. External noise is modeled by a 
two-state Markov process. A unified theory of internal and external fluctuations 
is described in terms of an effective integrodifferential master equation or its 
equivalent generating function representation. Two examples for which exact 
analytical results can be obtained are presented. A discussion of the white noise 
limit of the theory is also given. 
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1. INTRODUCTION 

In the study of open systems it is convenient to distinguish between external 
and internal fluctuations. This difference depends, of course, in what one 
chooses to define as the system. In practice, the difference between the 
system and its external parameters is clearly established in each particular 
case. The external parameters are determined by the environment of the 
system: boundary conditions, applied fields, etc. Internal fluctuations are 
those self-originated in the system. Their study is an important well-known 
part of statistical mechanics both in equilibrium and far from equilibrium. 
Generally speaking they reflect the statistical nature of a macroscopic 
description. They are associated with the large number of degrees of freedom 
averaged out in such description. An important fact about internal fluc- 
tuations is that they scale with the system size. Therefore, they vanish in the 
thermodynamic limit, except at a critical point where long-range order is 
established. 
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External fluctuations are those present in the system when this is subject 
to an external noise. Therefore, they are not "self-originated." External noise 
is here understood as the existence of external parameters which do not take 
a fixed value but random values. External noise can be originated by an 
intrinsic natural randomness of the environment of the system. It can also be 
intentionally applied in a given experimental setup: a control parameter of 
the system is forced to take random values with a well-defined prescription. 
In this last situation external noise plays the role of an external field driving 
the system. The analysis of this situation parallels other studies in which the 
behavior of a system is considered when driven away from equilibrium. This 
is, for example, the case of the study of critical dynamics away from 
equilibrium. (1) External noise situations have been recently studied from the 
theoretical and experimental point of view/2'3) Different parametrizations of 
external noise (4-8) and nonlinear noise coupling (9) have been analyzed. 
Systems on which the effect of external noise has been considered include, 
among others, chemical reactions, (1~ electrical circuits, (1H4) liquid 
crystals, ~9'15-17) hydrodynamical systems, (18'I9) laser and optical 
systems, (2~ plasmas, (24) nuclear reactors, (25) etc. The theoretical studies of 
external noise situations made up to now rely generally on the assumption of 
negligible internal fluctuations. The rationale for this procedure is that for a 
macroscopic system, external noise, if present, will dominate the internal 
fluctuations because the latter scale with the system size. On these grounds, 
external noise has been usually considered as a stochastic process to be 
implemented in deterministic equations which describe the behavior of a 
macroscopic system. Our purpose in this paper is to present a unified 
treatment in which external as well as internal fluctuations are 
simultaneously considered. The relevance of this approach is twofold. First, 
from a first principles point of view it is desirable to have a framework in 
which internal and external fluctuations can be jointly analized. The 
hypothesis of negligible internal fluctuations can then be justified by taking 
the thermodynamic limit in the presence of external noise. Moreover, in such 
framework, there exists the possibility of finding novel features associated 
with the interplay of internal and external fluctuations. These effects could 
not be analyzed when internal or external fluctuations are neglected. 
Secondly, from a practical point of view, this treatment provides with a 
method for calculating finite size effects in stochastically driven systems. For 
macroscopic finite systems these effects will be corrections to the predicted 
behavior in the absence of internal fluctuations. This aspect can be 
particularly important in thermodynamically small systems like lasers in 
some circumstances or electronic midrodevices. For very small systems, 
internal fluctuations and external fluctuations may become comparable. 

In this paper, and as first step towards more complicated situations, we 
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have considered simple ways of incorporating internal and external fluc- 
tuations into a unified description. We consider spatially homogeneous 
systems described by a single relevant variable. Internal fluctuations are 
modeled by a one-step markovian master equation. This model of internal 
fluctuations has been used in the literature for chemical reactions (26-28) laser 
systems, (29) tunnel diode circuits, ~3~ masers, ~3t) radioactive decay, (32) 
nuclear reactors, (33) biological systems, (34) etc. External noise is modeled by 
fluctuating parameters described by a two-state markov process (dichotomic 
noise). 

The main points of our approach can be summarized as follows. From 
the master equation describing internal fluctuations we write the associated 
differential equation for the generating function. In this equation external 
noise is introduced by means of a fluctuating parameter. This leads to a 
stochastic partial differential equation. The average of this equation over the 
realizations of the external noise gives an equation for an effective generating 
function. This function gives a complete unified description of the statistical 
properties of the system. An equivalent representation is given by an 
integrodifferential master equation for a probability density which incor- 
porates internal and external fluctuations. In the thermodynamic limit this 
integrodifferential equation reduces to the one which describes external fluc- 
tuations in the standard approach in which internal fluctuations are 
neglected. Finite size effects can be calculated from either the effective 
generating function or the probability density. 

The outline of the paper is the following: Section 2 contains the general 
theory. In Section 2.1 we summarize the standard independent approaches to 
internal fluctuations via a master equation and to external noise via a 
stochastic differential equation with a dichotomic noise. In Sections 2.2 and 
2.3 we present the unified theory of internal fluctuations and external 
dichotomic noise. Section 2.2 is devoted to the generating function represen- 
tation and Section 2.3 to the master equation representation. In Section 2.4 
we discuss an alternative method which makes use of the Poisson represen- 
tation of the master equation. ~35) In Section 3 we present two illustrative 
examples. We close the paper with a discussion in Section 4. In particular we 
discuss the difficulties associated with the white noise limit (36) of the results 
obtained for a dichotomic noise. 

2. GENERAL THEORY 

2.1. Standard Approaches 

Internal fluctuations in an homogeneous system have been studied in a 
great number of systems by means of a Markovian master equation. This 
master equation has the general form 



154 Sancho and San Miguel 

c~P(N, t) ~ [ W(N, N - L; t) P(N -- L, t) 
St L~= I 

+ W ( N , N + L ;  t ) P ( N + L ,  t)] 

oo 

_ \7 [ W ( N + L , N ; t ) +  W ( N - L , N ; t ) ] P ( N , t )  (2.1) 
L = I  

P(N, t) is, for example for a chemical model, the probability of having N 
particles of a given reactant at time t and W(N, N + L; t) is the transition 
probability at time t from a state with N + L particles to a state with N 
particles. We only consider here one-step master equations in which L only 
takes the value 1. We also introduce the following notation for the one-step 
transition probabilities(3V): 

Q(N, t) - W(N + 1, N; t) (2.2) 

R(N, t) =- W(N--  I, N; t) (2.3) 

With this notation (2.1) becomes for one-step processes, 

~P(N, t) 
c~t 

- - - Q ( N -  I,t) P ( N -  I , t ) +  R(N + I , t )P(N + 1, t) 

-- [Q(N, t) + R(N, t)] P(N, t) =- P N , - -~ ,  t P(N, t) (2.4) 

where we have introduced the operator F 

F (N, ~ - ~ , t ) = ( e - ~ 1 7 6  (ee /eN-1)R(N, t )  (2.5) 

The condition of detailed balance is always satisfied for a one-step master 
equation. As a consequence (27) a general formula for the stationary solution 
of (2.4) is known. 

The transition probabilities are in general assumed to be extensive quan- 
tities, that is, proportional to the system size. For a chemical model this is 
the volume V of the system. Defining a density 

x = N / V  (2.6) 

we have 

Q(N) = Vq(x), R(N) = Vr(x) (2.7) 

The functions q(x) and r(x) can also have contributions proportional to V -~. 
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An interesting and useful representation of the master equation is given 
by the generating function F(s, t). This is defined by (26) 

oo 

F(s, t) = \7 sUp(N, t) (2.8) 
N = 0  

This function satisfies the differential equation (34) 

c~F(s, t) s c2 

with a boundary condition which guarantees the normalization of P(N, t): 

F(s = 1, t ) =  1 (2.10) 

The generating function contains all the statistical information on the system. 
The probability distribution and its moments are, respectively, obtained as 

1 c3 N / s = o P(N, t) - N! ~s u gt, s, t) (2.1 1) 

(Nm) -- --~ N m p ( N , t ) =  S~s F(s , t )  (2.12) 
N = 0  s = l  

where ( . . . )  indicates an average taken with the probability distribution 
P(N, t). 

In the variable z = s - l ,  the generating function admits a Taylor 
expansion in the form 

co 

F(z, t) = Z bm zm (2.13) 
m - - 0  

---- 1. The factorial moments (~m) of P(N, t) defined where (2.10) implies b o 
by 

are given by 

(~m) = ( N ( N -  1) . . .  ( N - m  + i))  (2.14) 

c ~mE(s, t) c3mF(z, t) = m! b m (2.15) 
( ~ m )  - -  ~ s r r t  S = I  - -  ~ z m  z = O  

The fluctuations modeled by the master equation scale with the system size 
and vanish in the thermodynamic limit N-~ oo, V ~  oo, x = N / V  finite. 
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In this limit the master equation description reduces to a deterministic 
description ~176 defined by an evolution equation for x: 

dx 
dt = q(x) - r(x) (2.16) 

In this equation an eventual dependence of q(x) and r(x) in terms propor- 
tional to V " is assumed to be dropped. 

The deterministic equation (2.16) is the usual starting point in the 
studies of systems subject to an external noise influence. (2'3) Under the 
assumption of negligible internal fluctuations, the existence of external noise 
is modeled by substituting a parameter a in (2.16) by a stochastic process as 
a = 5 + ~(t). Here 5 is the man value of a and ~(t) is its fluctuation. This 
procedure transforms (2.16) into a stochastic differential equation. For 
simplicity we assume that the parameter a is only included in q(x) and that 
q(x) is a linear function of a: q(x) = q~(x) + aql(x ). Replacing a by 5 + ~(t) 
we have that q(x) --+ qo(x) + ~(t) ql(x), where qo(x) is q(x) with a ~ 5. In this 
case the stochastic differential equation is 

= qo(x) - r(x) + q~(x) ~(t) (2.17) 

A common way of dealing with the stochastic process defined by (2.17) 
is to look for the equation obeyed by the probability density of the process 
P(x, t). This equation depends on the nature of ~(t). Here we assume that ~(t) 
is a two-state markov process which takes values +A and has correlation 
time 2 - 1: 

~(t) = 0, ~(t) ~(t ') = A 2 exp(--2 It -- t '  l) (2.18) 

where indicates an average over the realizations of the external noise {(t). 
The dichotomic Markov noise {(t) is hardly a good model of natural 
environmental noise. Nevertheless, it can be easily applied to a system in 
laboratory conditions. This is a well-controled situation to study the 
cooperative response to a random perturbation. Specific examples are 
considered in ReL 2. 

Under these assumptions the probability density P(x, t) obeys the 
following integrodifferential equation: 

Be(x, t) a 
at - 8x [q~ r(x)] P(x, t) 

8 t 8 - r(x)]) ( t -  + A2~x qa(X) ~oeXp 1--()L +-~x [qo(x) t') I 

• ~x ql(x) P(x, t') dt' (2.19) 
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or the two linear partial differential equations 

~-~ P(x, t) = -- ~xx [q~ -- r(x)] P(x, t) -- ql(X) Pl(x, t) (2.20) 

2_8t P,(x, t ) = - 2 P , ( x ,  t ) 8  [qo(X) - r(x)] P(x, t ) -  A2 ~---~ ql(x)P(x, t) 

(2.21) 

where 

Pl(x, t) = ~(t) ~(x - x(t)), P(x, t) = ~(x - x(t)) (2.22) 

The stationary solution of (2.19) is 

Po(x) = C 
ql(x) 

A 2q~(x) - [q0(x) - r(x)] 2 

2(qo(X' ) - r(x')) 
Xexpl fXdx 'Azq~(x-7~-(~o~xT~:r(x , )]2l  (2.23) 

The details of the derivation of Eqs. (2.19)-(2.23) can be found in Refs. 5 
and 41. 

An important thing to keep in mind is that the fluctuating parameters in 
q(x) are assumed to be parameters determined from conditions external to 
the system under consideration. This is the meaning of their "external noise" 
character. In particular they cannot have an explicit dependence on the 
volume of the system V. As a consequence, the noise intensity A 2 is an 
intensive quantity and it remains constant in the thermodynamic limit. In a 
chemical model the fluctuating parameter can be, for example, the concen- 
tration of a reactant which is kept constant on the average from outside of 
the system. Another example is the light intensity in a photochemical 
reaction.(1~ 

2.2. External Noise in the Equation for the Generating Function 

In this section and in Section 2.3 we develop a formalism for the joint 
study of internal an external fluctuations. The presence of external noise is 
considered in the equations which take into account internal fluctuations of 
the system. This is done by the same method that external noise is modeled 
in the absence of internal fluctuations. That is, we substitute the fixed value 
of an external parameter by a stochastic process. This can be done in the 
master equation (2.4) or in the equation for the generating function (2.9). We 
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first consider external noise in the equation for the generating function. The 
discussion for the master equation is given in Section 2.3. 

With the same simplifying assumptions that in (2.17)the substitution of 
a by c7 + ~(t) leads to a stochastic transition probability of the form 

Q(N, t) = Qo(N) + Qa(N) ~(t) (2.24) 

The requirement of positivity of Q(N) implies that Qo(N)- Qa(N)A >/O 
[Qa(N) and c7 are positive quantities]. This requirement on the value of A is 
satisfied when the external parameter a does not change its sign when it fluc- 
tuates. Otherwise, the starting master equation (2.4) becomes, at least in 
principle, meaningless. 

Substituting (2.24) in (2.9) we obtain 

?F(s, t) 
~t = [ ( s -  1)Q~ (s f--~-)+ ( + - - 1 ) R  (s~-~)]F(s,t) 

+ (s -- 1) ~(t) 01 S ~S F(S, t) (2.25) 

This is a stochastic partial differential equation for F(s, t). The generating 
function F(s, t) is now a functional of ~(t). Averaging this equation over the 
realizations of ~(t) we obtain an equation for an effective generating function 
if(s, t) defined as the average of F(s, t) over the realizations of ~(t): 

if(s, t) =- F(s, t) (2.26) 

This equation is 

eY(s, t) _ (s + 
el = [ ( s  1)O o ( @ - - l ) R ( S ~ s ) ] f f ( s , t )  

+ (s - 1 )  Q, (s ff--~) Fl(S, t) (2.27) 

where 

Fa(S, t) -- {(t) F(s, t) (2.28) 

To obtain a closed set of equations we now look for the equation satisfied by 
Fl(S, t). This is obtained using the "diferentiation formula" of Shapiro and 
Loginov ~42) 

c~----[ ~(t) F(s, t) = --)~ ~(t) F(s, t) + ~(t) F(s, t) (2.29) 



External Two-State Markov Noise 159 

Thus, 

Equations (2.27) and (2.30) form the set of closed equations. Integrating 
formally (2.30) and substituting in (2.27) we obtain the following integrodif- 
ferential equation for F(s, t): 

+ d 2 ( s - 1 ) Q ,  (s~@)~2exp ( - 7 2 +  [(s-1)Qo(S~--~) 

Here we have set FI(S, 0) = 0, which implies statistical independence of ~(t) 
and F(s, t) at l = 0. 

Equation (2.31) gives a complete description of the statistical properties 
of the system when both internal and external fluctuations are taken into 
account. 

2.3. External Noise in the Master Equation 

We now consider the master equation (2.4) in the presence of external 
noise. When we substitute (2.24) in (2.4), P(N, t) becomes a functional of 
~(t). We then define P(N, t) and PI(N, t) by 

P(N, t) = P(N, t), P1(N, t) = ~(t) P(N, t) (2.32) 

which are related to/7(s, t) and Fl(s, t) by 

F(s, t)= ~ sNfi(N,t), Fl(s,t)= ~ sNp,(N,t) (2.33) 
N = 0  N = 0  

Inverting the steps which lead to (2.9) from (2.4) one can obtain the 
equations for/~(N, t) and PI(N, t) from equations (2.27) and (2.30) 
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~fi(N, t )  
- PoP(N, t) + r~ oPa(N, t) (2.34) 

cqt 

cqPI(N, t) 
St 

- -  -~PI(N, t) -}- FoPI(N, t) + AZFI,oP(N, t) (2.35) 

where F o is defined as in (2.4) with Q(N) replaced by Qo(N) 

F~, o = (e -~/eN -- 1) Q,(N) (2.36) 

Integrating formally (2.35) with PI(N, 0 ) =  0 and substituting in (2.34) we 
obtain an integrodifferential equation satisfied by P(N, t): 

-~ P(N,- t) = FoP(N, t) + A 2F,,o fo' exp [--0!" + ro)(t - t ')] F,,oP(N, t') dt' 

(2.37) 

This equation gives a complete description of the problem. It is equivalent to 
Eq. (2.31). 

It is also interesting to consider a joint probability P(N, +A; t) for the 
two processes N and ~(t). This is defined as the probability of having N 
particles and the external noise the value • at time t. 

From the definition (2.32) it is easy to see that 

P(N, t) = P(N, A ; t) + P(N, -A;  t) (2.38) 

Pa(N, t) -~ A [P(N, A; t) - P(N, -A;  t)] (2.39) 

Inverting these algebraic equations and using (2.34) and (2.35) we obtain the 
following equations for P(N, • t): 

~3P(N, A; t) 
St 

---- [ a o ( N -  1) + A Q I ( N - -  1 ) ]P (N- -  1, A;t)  + R ( N +  1 ) P ( N +  1,A;t) 

- [a0(N) + AQI(N ) + R(N) + 2/2] P(N, A; t) + (2/2) P(N, --A; t) (2.40) 

~3P(N, --A; t) 
c3t 

= [Qo(N-  1) - AQI(N -- 1)] P(N -- 1, --A; t) + R(N + 1) P(N + 1, -A;  t) 

- [ Q o ( N ) - A Q I ( N ) + 2 / 2 ] P ( N ,  - -A ; t )+  (2/2)P(N,A;t)  (2.41) 
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Equations (2.40) and (2.41) constitute a master equation for the two 
variables N and ~(t). In these equations we find again the requirement 
Qo - Q1A ~ 0 to guarantee the positivity of the transition probabilities. 

In the thermodynamic limit V ~  oo, N ~  oo, N / V = x  internal fluc- 
tuations dissapear and we recover the standard description of external noise: 
in this limit 

F~ = c~x [q~ -- r(x)], FI,Q -- c3x q~(x) (2.42) 

and (2.37) reduces to (2.19). A systematic expansion in powers of V 1 of 
(2.37) provides a useful method to calculate finite size effects in a 
stochastically driven system. From such an expansion it is easy to see that in 
general there will be a coupling of internal and external fluctuations: there 
are terms proportional to AZV ". These terms vanish in the thermodynamic 
limit and also for a finite system in the absence of external noise. 

2.4. Use of the Poisson Representation 

The Poisson representation of the master equation ~35) is a useful method 
to study internal fluctuations. In this representation the statistical properties 
are calculated from a stochastic differential equation for a continuous 
variable instead of using the discrete master equation. This gives a formal 
similarity with the starting point of the standard approach to external noise. 
With this motivation we study in this section our unified theory of internal 
and external fluctuations making use of the Poissson representation of the 
master equation. 

The Poisson representation of P(N, t )  is defined introducing a 
quasiprobability f (a ,  t) (35) 

a N 

P(N, t) = ( da e -a - -  f (a ,  t) (2.43) 
N! 

An important property o f f ( a ,  t) is that the factorial moments (2.14) of 
P(N, t) are just the moments o f f ( a ,  t): 

(Y2m) = .f da amf(a, t) (2.44) 

The differential equation satisfied by f (a ,  t) is obtained as follows. Without 
loss of generality we assume that the transition probabilities are proportional 
to factorial moments: 

Q(N) = c t v - ( m - 1 ) N ( N -  1) . . .  ( N -  m + 1) (2.45) 

R ( N ) = f l V - ~ t - ' ) N ( N  - 1) . . .  ( N - l +  1) (2.46) 

822/37/1-2-11 
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In (2.45) we have explicitly taken into account the extensivity property 
of Q(N)  and R ( N ) ,  and a and fl are volume-independent constants. 
Substituting (2.45) and (2.46) in (2.4), using (2.43), and integrating by parts 
we obtain that the different terms of the master equation are transformed as 

( )m et ~3 1 -- c3 a mf (a ,  t) 
Q ( N  - 1 ) P ( N  - 1, t) - Q(N)  P(N,  t) ~ - v m _ l  " (3--d ~a 

(2.47) 

R ( N  + 1) P ( N  + 1, t) - R ( N )  P(N, t)-~ ~ fl ~aa(3 ( 1 -- ~aa(3 ) '  ' a t f ( a ,  t) 

(2.48) 

The equation satisfied by f ( a ,  t) is then 

(3 f ( a , t) (3 a (3 am _ _ _  
(3t (3a 1-Ua Vt_ l  ( 1 - ~ a  ] a ' l f ( a , t )  

(2.49) 

In the case in which m ~< 1 and l ~< 2 this is a Fokker-Planck-type equation 
which can be solved by standard methods. 

External noise can be taken into account by substituting a parameter in 
(2.49) by a stochastic processes. For example we replace a by d + ~(t). This 
leads to a stochastic partial differential equation for f ( a ,  t), which becomes 
now a functional of ~(t): 

(3f(a,t)  (3 5 --~a vI_X 1---~a a l f ( a , t )  (3t - (3a ~ 1 am_  fl__..fl_ (3 l-1 

V m-1  (3a 1 - -~a amf(a,  t) (2.50) 

We now follow the same mathematical steps than in the case of the 
generating function of Section 2.2. We definer(a,  t) as the average o f f ( a ,  t) 
over the realizations of ~(t) andfl(a ,  t) as 

f ~(a, t) = ~(t) f ( a ,  t) (2.51) 

These two functions obey a closed set of equations: 

[ (3 f ( a , t) (3 a -- ~a 
~t -- c3a ~ 1 a m - _  

(2.52) ( (3)m 1 (3 - -~a  
V m-1 (3a 1 amfl(a,  t) 
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[ ( ) m  ?f l(a, t) c~ 6 ~3 a m 
o ~ -  xf'(a't)-~a ~ 1-U~ 

fl (1 c~ t - la t ] f l (a , t )  
V l- ~ - 7aa/ 

A2 ? (  ~ ) "  
V m-I ~a 1 -~a  amf(a't) (2.53) 

An example in which the stationary solution of (2.52) and (2.53) can be 
explicitly calculated is given in the next section. These equations have a 
formal similarity with Eqs. (2.27)-(2.30) for the generating function. The 
two sets of equations are partial differential equations for functions of a 
continuous variable. As a consequence it is in general easier to deal with 
them than with Eqs. (2.34) and (2.35). An advantage of the Poisson 
representation over the generating function method is that f(a, t) is more 
directly connected with the probability density of the process. In general 
P(N, t) is the Poisson transform of fr(a,t). This connection becomes 
particularly clear in the thermodynamic limit: introducing an intensive 
variable y =- a/V we have for a factorial moment 

( x ( x - 1 ) . . . ( x - m v 1 ) ) = f d y y m V f ( y , t )  (2.54) 

Here (.-77.) indicates the average over both internal and external fluctuations. 
Equation (2.54) shows that in the thermodynamic limit Vf(y, t) becomes the 
probability density if(x, t). Equations (2.52) and (2.53) can be rewritten for 
the variable y. Eliminating fl(Y, t) we obtain an integrodifferential equation 
for f (y , t )  

9 -  ~[~( l__LL]mym__ 1 -~-f(y, t)=--~yy V c3y] fl (1 1~___~)t- yt] f(y,t) 

9 (1 1 ~ 'm m ['t ~--~[ (1 L ~ l m y  m 

-/~ (1----- 1 ~'-~ e ( l _ _ ~ ) m  

• py(y, t') at' (2.55) 

In the thermodynamic limit (2.55) reduces to (2.19). No such easy direct 
connection exists between (2.31) and (2.19). For a finite V, (2.55) is a good 
starting point to study finite size effects in a perturbation around the ther- 
modynamic limit. 
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3. E X A M P L E S  

We present in this section two illustrative examples in which we apply 
the general techniques of the previous section. The first example admits an 
exact time-dependent solution for the effective generating function i f(s ,  t). In 
a particular limit the relevance of the positivity requirement of the transition 
probability becomes apparent. In the second example we obtain exact 
expressions for the steady state effective generating function and probability 
distribution. In both examples the relative fluctuations have a contribution 
originated by the external noise and another one due to internal fluctuations 
which vanishes in the thermodynamic limit. 

Example 1. The first example is a Poisson counting process defined 
by the transition probabilities 

Q ( N )  = aV,  R ( N )  = 0 (3.1) 

This model has no steady-state solution. External noise is introduced through 
fluctuations in the parameter a so that Q o ( N ) =  ~V,  Q t ( N ) =  V. Equations 
(2.27) and (2.30) become here 

~P 
c~t = ( s -  1 ) a v F +  (s - 1) VF, (3.2) 

c3F 1 
- )~r I + (s - 1) ~ V F  1 + (s - 1) VA2f f  (3.3) 

c~t 

These equations have to be solved with the boundary condition (2.10) and 
the initial conditions Fl(S,  t = 0) = 0 and F(s ,  t = O) = s N~ [fi(N, t = O) = 
bU,U0]" Equations (3.2) and (3.3) are a set of linear equations with eigen- 
values 

Therefore 

where 

X1, 2 = {2c~V(s- 1 ) - 2  • [22 + 4A2VZ(s  - 1)2]'/2}/2 (3.4) 

i f(s ,  t) = A (s) exp(X 1 t) + B ( s )  exp(X 2 t) (3.5) 

s~o{~ + [;t ~ + 4A2v=(s _ 1)~]1/2} 
a ( s )  = 2[z~ + 4a2v2(  s _ 1)~]1/2 (3.6) 

sNo{__~..jff [~2 _~ 4A2V2(s _ 1)211/2} 
B ( s )  = 2122 + 4 A z V 2 (  s _ 1):]l/2 (3.7) 
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The implications of the positivity requirement Qo(N))Q~(N)A are clearly 
seen in a limiting case of this example. We consider a static limit for the  
noise in which its correlation time 2-1 --+ oo. In this limit 

sNo 
/T(s, t)------~-{exp[V(s- 1)(c~ +A) t ]  + e x p [ V ( s -  1)(a--A)t]}  (3.8) 

Expanding in powers of s we immediately obtain from (2.11) 

fi(N, t) - [V(a+  A)t] N 
2N! exp [ -  V(c7 + A)t] 

[v(a - A)t]  N exp[-V(a  --A)t]  (3.9) 
~- 2N! 

Here we have taken N o = 0. The probability distribution is therefore the sum 
of two Poisson distributions with mean values V(6 + A)t  and V ( a - A ) t .  In 
the light of (2.38) the two terms in (3.9) are naturally interpreted. We now 
clearly see that the requirement Qo(N)>1 QI(N)A that is d>/A, guarantees 
the positivity of fi(N, t). For A > c7, P(N, - A  ; t) becomes negative for N odd. 
This situation corresponds to values of A for which a = a + ~(t) takes 
negative values. In this case the master equation (2.4) lacks physical 
meaning. 

From (2.12) and (3.8) we obtain 

= v a t  (3.10) 

(N}2 - - f f 2  + Vfft (3.11) 

The mean value is independent of A and the relative fluctuation has a 
contribution from the internal noise which remains finite in the ther- 
modynamic limit and another one coming from the internal fluctuations 
which vanishes in this limit. The internal noise contribution also vanishes as 
t--+ o0. 

Example 2. Our second example is defined by the following chemical 
reaction 

B +X----~C 
k' 

where the concentrations b and e of the reactants B and C are kept constant 
from outside of the system. This reaction is described by the master equation 
(2.4) with 

Q(N) = Vk'c =- Va (3.12) 

R(N) = kbU= flN (3.13) 
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The stationary solution of  the master equation is a Poisson distribution 

Pst(N) = ( a v t N  e -~v,~ 
\ fl ] N! (3.14) 

The first moment  and the relative fluctuations are 

a V  
( N ) - -  fl (3.15) 

(N 2) - -  ( N )  2 fl 
= (3.16) 

(N} 2 a V  

We model an external source of  noise by fluctuations of the parameter a, 
a ~ c7 + ~(t). Equations (2.27) and (2.30) are in this case 

(3F(s, t) ( s _ l )  V a f f ( s , t ) _ f l ( s _ l ) f f _ ~ F - ( s , t ) + ( s _ l ) V F l ( S , t )  (3.1'7) 
cgt 

~Fl (S ,  t______)) 
- -  2 F l ( S  , t )  + (S - -  1) V a F l ( S  , t )  - - f l ( s  - -  1)~-s Fl(S , l) 

~t  

+ AZV(s -- 1) if(s, t) (3.18) 

From these two equations we obtain for the steady-state effective generating 
function fist a second-order differential equation 

d 2 - 2 -- 25Vz d - 2 f f V -  ( A  2 _ ~ 2 )  V2z  _ 
Z~zzFs t (Z )+  fl dzFst(  z ) f12 rst(Z) = 0 (3.19) 

where z = s - 1. 
This equation admits a solution of  the form (2.13) with the recurrence 

relation 
Vffb o ~ V  

b 1 - - -  - (3.20) 

( ) [ v2 
2 ffV 2(n - 1) + b,  1 ( A  2 - -  ~ 2 ) b n _  0 n n - - l + ~  b n - - - ~ -  ~ - fl 2 = 

(3.21) 

From (2.15) and (3.20)--(3.21) we obtain the first moment and the relative 
fluctuation 

(.~) = bl = c~V (3.22) 

(~72) _ ( ~ ) 2  2b2 + bl - b~ /~ + 1 + (3 .23)  
(N} l -- b~ = 5V 5 -~  
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The mean value (3.22) coincides with the result (3.15) obtained in the 
absence of external noise. The reltive fluctuation has a new term with respect 
to Eq. (3.16). This new term is volume independent and therefore also 
present in studies in which internal fluctuations are neglected, that is in the 
thermodynamic limit V ~  oc. 

A closed expression for the stationary probability density of this model 
is more easily obtained using the Poisson representation method of 
Section 2.4. In this example f ( a ,  t) satisfies Eq. (2.49) with m = 0, l =  1. 
Equations (2.52) and (2.53) become for this particular model 

c~t - ~a ( V ~ - f l a ) f ( a ,  t ) -  V f~(a, t) (3.24) 

The steady-state solution of (3.24) and (3.25) is given by 

where 

f s t ( a )  = C [ A 2 V  2 - -  ( ~ V - 1 ~ a ) 2 ]  A / 2 B - I  (3.26) 

/~r(1/2 + ~,/2/~) (3.27) 
C = (A V) a/~ -1 F ( 1 / 2 )  r(,~/2/~) 

According to (2.43) the stationary probability distribution is 

f 
a + a N 

fist(N) = C da e - "  - -  [A2V 2 - ( a V - ~ a ) 2 ]  ~/z~-1 
a N! 

V N + I  
= C - ~ - .  ~_aj dy eV'/~(ff - y)N(A2 -- y2)a/2~-, (3.28) 

where 

V 
a+ = -;-- (c~ • A) (3.29) 

P 

Equation (3.26) or (3.28) gives a complete closed description of the 
statistical steady-state properties. The results (3.22) and (3.23) are easily 
recovered for Eq. (3.27) or (3.29), although it is clear that if one is only 
interested in the evaluation of the first moments a more straightforward 
method is the power series solution of Eq. (3.19). 

The example we have considered here has also been studied in the white 
noise limit of ~(t). ~36) A comparison of results is given in the next section. 
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4. D I S C U S S I O N  

In this paper we have presented a general formalism to deal in a unified 
way with internal and external fluctuations. This formalism leads to an 
equation (2.31) for a effective generating function which contains all the 
statistical information on the system. An equivalent representation is the one 
provided by the equation (2.37) for the effective probability distribution. The 
Poisson representation gives an alternative method to deal with the problem. 

For a macroscopic system under the influence of an external source of 
noise, internal fluctuations have to be usually considered as finite size 
corrections to the dominant external fluctuations. In the examples that we 
have considered we have calculated explicitly these finite size corrections in 
the relative fluctuations. We have found that they are decoupled from the 
external noise contribution. Nevertheless in more general cases we expect to 
find a coupling of the two kinds of fluctuations which would give 
contributions proportional to both the external noise intensity and the inverse 
system size. This sort of finite size corrections do not exist for a finite system 
in the absence of external noise. 

Our development has been based on the modeling of external noise by a 
two-state Markov process. In an earlier attempt to deal with this problem we 
assumed an external Gaussian white noise. (36'43) We wish now to discuss the 
relation between these two approaches. We first note that in the white noise 
limit of the dichotomic noise A ~ oo, )~ ~ ~,  A2/2 = D we recover the results 
of Refs. 36, 43. In this limit Eq. (2.37) for the effective probability density 
becomes 

~fi(N, t____~) _ (F ~ + DF~ o) if(N, t) (4.1) 
c~t 

This is an effective master equation (36'43) with effective transition 
probabilities 

f fZ(N,N-1)=Qo(N-1) -DQ~(N-1) -DQI(N)QI(N-1)  (4.2) 

l~(U,U+ 1) = R ( N +  1) (4.3) 

I/V(N, U -  2) = DQI(N- 2) QI(N- 1) (4.4) 

The white noise limit of (2.31) gives the equation for the effective generating 
function associated with (4.1) 

c~ff(s,,) [ (s ~__~) + ( l  l) (s ~__~) ] 
c3t [(s 1) Qo 

+ 
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The mathematical problem associated with the white noise limit is that when 
we substitute a parameter a by c~ + ~(t) in the starting master equation (2.4) 
the resulting stochastic transition probabilities can never be positive definite 
since ~(t) has unbounded realizations. As a consequence, the stochastic 
master equation or the associated stochastic partial differential equation for 
F(s, t) is ill-defined and the positivity of the solution of (4.1) cannot be 
guaranteed in general. This problem does not occur with a dichotomic noise 
~(t) which has bounded realizations. With the requirement c7 >/A each step of 
our development is well defined. This difference between the dichotomic and 
white noise is explicitly seen in the requirement of positivity of the transition 
probabilities. The requirement found in Section 2, Qo-  Q1A >~ O, is always 
satisfied for d>/A. The requirement of positivity of (4.2) is volume 
dependent due to the extensivity of Q0 and Q1. This implies that in the white 
noise limit there is no value of D for which the solution of (4.1) is positive 
definite for all values of V. These difficulties are clearly seen in the second 
example of Section 3. From Eq. (3.28) it is easy to see that fist(N) is positive 
definite if ~/> A. The Gaussian white noise limit of (3.28) gives (36) 

]~ 1/2 ( D r  2 aV 

~5-. Texp \ 2fl fl-/  

 ;  a Nex"l 
_ ~ 2 D  V 2 - -  ~ -  ( a  - 

The associated generating function is 

[ - - ~ )  DV2s2] ( 4 . 7 )  
ffst(S)=exp (DV2--~2Ct) v + ( ~ 2  Vs+ 2fl J 

From (4.7) and (2.11) it is easy to see that fist(N) becomes negative for N 
odd if ~ < D V. The related condition for the positivity of the transition 
probability (4.2) is in this case c~ > 2DV. In connection with the volume 
dependence of these conditions it is interesting to note that in the ther- 
modynamic limit Eq. (4.1) reduces to the correct Fokker-Planck equation 
which describes the system when internal fluctuations are neglected: 

eP(x, t) 
~t 

c3 D c~ c~ ~x [q~ -- r(x)] P(x, t) + -~x q~(X) ~xq~(x) P(x, t) (4.8) 

Due to the difficulties discussed above it is not completely clear which 
is the correct physical interpretation of the results found in the white noise 
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limit. This is even so for values of  the parameters for which W(N, N -- 1) in 
(4.2) is positive, because the stochastic transition probability obtained when 
a becomes a random parameter in (2.4) is never positive definite in this limit. 
The mathematical difficulties associated with the white noise limit can also 
be seen in a different approach in which one looks for a joint description of 
fluctuations in terms of  a stochastic differential equation. This possibility has 
been partially analyzed in a different context in Ref. 44. In summary,  the 
interpretation of  the white noise limit remains as a problem with uncolved 
aspects requiring a deeper study which will be reported in the near future. 
Nevertheless we believe that in many circumstances the white noise limit is a 
useful approximation that gives physically sound results. It must be regarded 
as a calculational tool that gives correct results for the first moments of  the 
distribution, at least for some restricted values of  the parameters. For 
example, the relative fluctuations calculated directly from (4.6) or (4.7) 
coincide with the white noise limit of  (3.23). Such a limit taken at the level 
of (3.23) makes perfect physical sense. 

We finally note that there are other possible limits that may be 
worthwhile analyzing, for example 2 ~ oo with A 2 constant. In this case the 
difficulties mentioned above may not exist, but the physical contents of  the 
limit should be analyzed in specific examples. 
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